5 resultados para Skin and Connective Tissue Diseases

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of protein expression profiles for biomarker discovery in serum and in mammalian cell populations needs the continuous improvement and combination of proteins/peptides separation techniques, mass spectrometry, statistical and bioinformatic approaches. In this thesis work two different mass spectrometry-based protein profiling strategies have been developed and applied to liver and inflammatory bowel diseases (IBDs) for the discovery of new biomarkers. The first of them, based on bulk solid-phase extraction combined with matrix-assisted laser desorption/ionization - Time of Flight mass spectrometry (MALDI-TOF MS) and chemometric analysis of serum samples, was applied to the study of serum protein expression profiles both in IBDs (Crohn’s disease and ulcerative colitis) and in liver diseases (cirrhosis, hepatocellular carcinoma, viral hepatitis). The approach allowed the enrichment of serum proteins/peptides due to the high interaction surface between analytes and solid phase and the high recovery due to the elution step performed directly on the MALDI-target plate. Furthermore the use of chemometric algorithm for the selection of the variables with higher discriminant power permitted to evaluate patterns of 20-30 proteins involved in the differentiation and classification of serum samples from healthy donors and diseased patients. These proteins profiles permit to discriminate among the pathologies with an optimum classification and prediction abilities. In particular in the study of inflammatory bowel diseases, after the analysis using C18 of 129 serum samples from healthy donors and Crohn’s disease, ulcerative colitis and inflammatory controls patients, a 90.7% of classification ability and a 72.9% prediction ability were obtained. In the study of liver diseases (hepatocellular carcinoma, viral hepatitis and cirrhosis) a 80.6% of prediction ability was achieved using IDA-Cu(II) as extraction procedure. The identification of the selected proteins by MALDITOF/ TOF MS analysis or by their selective enrichment followed by enzymatic digestion and MS/MS analysis may give useful information in order to identify new biomarkers involved in the diseases. The second mass spectrometry-based protein profiling strategy developed was based on a label-free liquid chromatography electrospray ionization quadrupole - time of flight differential analysis approach (LC ESI-QTOF MS), combined with targeted MS/MS analysis of only identified differences. The strategy was used for biomarker discovery in IBDs, and in particular of Crohn’s disease. The enriched serum peptidome and the subcellular fractions of intestinal epithelial cells (IECs) from healthy donors and Crohn’s disease patients were analysed. The combining of the low molecular weight serum proteins enrichment step and the LCMS approach allowed to evaluate a pattern of peptides derived from specific exoprotease activity in the coagulation and complement activation pathways. Among these peptides, particularly interesting was the discovery of clusters of peptides from fibrinopeptide A, Apolipoprotein E and A4, and complement C3 and C4. Further studies need to be performed to evaluate the specificity of these clusters and validate the results, in order to develop a rapid serum diagnostic test. The analysis by label-free LC ESI-QTOF MS differential analysis of the subcellular fractions of IECs from Crohn’s disease patients and healthy donors permitted to find many proteins that could be involved in the inflammation process. Among them heat shock protein 70, tryptase alpha-1 precursor and proteins whose upregulation can be explained by the increased activity of IECs in Crohn’s disease were identified. Follow-up studies for the validation of the results and the in-depth investigation of the inflammation pathways involved in the disease will be performed. Both the developed mass spectrometry-based protein profiling strategies have been proved to be useful tools for the discovery of disease biomarkers that need to be validated in further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging is characterized by a chronic, low-grade inflammatory state called “inflammaging”. Mitochondria are the main source of reactive oxygen species (ROS), which trigger the production of pro-inflammatory molecules. We are interested in studying the age-related modifications of the mitochondrial DNA (mtDNA), which can be affected by the lifelong exposure to ROS and are responsible of mitochondrial dysfunction. Moreover, increasing evidences show that telomere shortening, naturally occurring with aging, is involved in mtDNA damage processes and thus in the pathogenesis of age-related disorders. Thus the primary aim of this thesis was the analysis of mtDNA copy number, deletion level and integrity in different-age human biopsies from liver, vastus lateralis skeletal muscle of healthy subjects and patients with limited mobility of lower limbs (LMLL), as well as adipose tissue. The telomere length and the expression of nuclear genes related to mitobiogenesis, fusion and fission, mitophagy, mitochondrial protein quality control system, hypoxia, production and protection from ROS were also evaluated. In liver the decrease in mtDNA integrity with age is accompanied with an increase in mtDNA copy number, suggesting the existence of a “compensatory mechanism” able to maintain the functionality of this organ. Different is the case of vastus lateralis muscle, where any “compensatory pathway” is activated and mtDNA integrity and copy number decrease with age, both in healthy subjects and in patients. Interestingly, mtDNA rearrangements do not incur in adipose tissue with advancing age. Finally, in all tissues a marked gender difference appears, suggesting that aging and also gender diversely affect mtDNA rearrangements and telomere length in the three human tissues considered, likely depending on their different metabolic needs and inflammatory status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apple consumption is highly recomended for a healthy diet and is the most important fruit produced in temperate climate regions. Unfortunately, it is also one of the fruit that most ofthen provoks allergy in atopic patients and the only treatment available up to date for these apple allergic patients is the avoidance. Apple allergy is due to the presence of four major classes of allergens: Mal d 1 (PR-10/Bet v 1-like proteins), Mal d 2 (Thaumatine-like proteins), Mal d 3 (Lipid transfer protein) and Mal d 4 (profilin). In this work new advances in the characterization of apple allergen gene families have been reached using a multidisciplinary approach. First of all, a genomic approach was used for the characterization of the allergen gene families of Mal d 1 (task of Chapter 1), Mal d 2 and Mal d 4 (task of Chapter 5). In particular, in Chapter 1 the study of two large contiguos blocks of DNA sequences containing the Mal d 1 gene cluster on LG16 allowed to acquire many new findings on number and orientation of genes in the cluster, their physical distances, their regulatory sequences and the presence of other genes or pseudogenes in this genomic region. Three new members were discovered co-localizing with the other Mal d 1 genes of LG16 suggesting that the complexity of the genetic base of allergenicity will increase with new advances. Many retrotranspon elements were also retrieved in this cluster. Due to the developement of molecular markers on the two sequences, the anchoring of the physical and the genetic map of the region has been successfully achieved. Moreover, in Chapter 5 the existence of other loci for the Thaumatine-like protein family in apple (Mal d 2.03 on LG4 and Mal d 2.02 on LG17) respect the one reported up to now was demonstred for the first time. Also one new locus for profilins (Mal d 4.04) was mapped on LG2, close to the Mal d 4.02 locus, suggesting a cluster organization for this gene family, as is well reported for Mal d 1 family. Secondly, a methodological approach was used to set up an highly specific tool to discriminate and quantify the expression of each Mal d 1 allergen gene (task of Chapter 2). In aprticular, a set of 20 Mal d 1 gene specific primer pairs for the quantitative Real time PCR technique was validated and optimized. As a first application, this tool was used on leaves and fruit tissues of the cultivar Florina in order to identify the Mal d 1 allergen genes that are expressed in different tissues. The differential expression retrieved in this study revealed a tissue-specificity for some Mal d 1 genes: 10/20 Mal d 1 genes were expressed in fruits and, indeed, probably more involved in the allergic reactions; while 17/20 Mal d 1 genes were expressed in leaves challenged with the fungus Venturia inaequalis and therefore probably interesting in the study of the plant defense mechanism. In Chapter 3 the specific expression levels of the 10 Mal d 1 isoallergen genes, found to be expressed in fruits, were studied for the first time in skin and flesh of apples of different genotypes. A complex gene expression profile was obtained due to the high gene-, tissue- and genotype-variability. Despite this, Mal d 1.06A and Mal d 1.07 expression patterns resulted particularly associated with the degree of allergenicity of the different cultivars. They were not the most expressed Mal d 1 genes in apple but here it was hypotized a relevant importance in the determination of allergenicity for both qualitative and quantitative aspects of the Mal d 1 gene expression levels. In Chapter 4 a clear modulation for all the 17 PR-10 genes tested in young leaves of Florina after challenging with the fungus V. inaequalis have been reported but with a peculiar expression profile for each gene. Interestingly, all the Mal d 1 genes resulted up-regulated except Mal d 1.10 that was down-regulated after the challenging with the fungus. The differences in direction, timing and magnitude of induction seem to confirm the hypothesis of a subfunctionalization inside the gene family despite an high sequencce and structure similarity. Moreover, a modulation of PR-10 genes was showed both in compatible (Gala-V. inaequalis) and incompatible (Florina-V. inaequalis) interactions contribute to validate the hypothesis of an indirect role for at least some of these proteins in the induced defense responses. Finally, a certain modulation of PR-10 transcripts retrieved also in leaves treated with water confirm their abilty to respond also to abiotic stress. To conclude, the genomic approach used here allowed to create a comprehensive inventory of all the genes of allergen families, especially in the case of extended gene families like Mal d 1. This knowledge can be considered a basal prerequisite for many further studies. On the other hand, the specific transcriptional approach make it possible to evaluate the Mal d 1 genes behavior on different samples and conditions and therefore, to speculate on their involvement on apple allergenicity process. Considering the double nature of Mal d 1 proteins, as apple allergens and as PR-10 proteins, the gene expression analysis upon the attack of the fungus created the base for unravel the Mal d 1 biological functions. In particular, the knowledge acquired in this work about the PR-10 genes putatively more involved in the specific Malus-V. inaequalis interaction will be helpful, in the future, to drive the apple breeding for hypo-allergenicity genotype without compromise the mechanism of response of the plants to stress conditions. For the future, the survey of the differences in allergenicity among cultivars has to be be thorough including other genotypes and allergic patients in the tests. After this, the allelic diversity analysis with the high and low allergenic cultivars on all the allergen genes, in particular on the ones with transcription levels correlated to allergencity, will provide the genetic background of the low ones. This step from genes to alleles will allow the develop of molecular markers for them that might be used to effectively addressed the apple breeding for hypo-allergenicity. Another important step forward for the study of apple allergens will be the use of a specific proteomic approach since apple allergy is a multifactor-determined disease and only an interdisciplinary and integrated approach can be effective for its prevention and treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Group A Streptococcus is a Gram-positive human pathogen able to colonize both upper respiratory tract and skin. GAS is responsible for several acute diseases and autoimmune sequelae that account for half a million deaths worldwide every year (Cunningham et al., 2000). As other bacteria, GAS infections requires the capacity of the pathogen to adhere to host tissues and to form cell aggregates. The ability to persist in distinct host niches like the throat and the skin and to trigger infections is associated with the expression of different GAS virulence factors. GAS pili has been described as important virulence factors encoded by different FCT-operon regions. Based on this information, we decided to study the possible effect of environmental conditions that could regulate the pili expression. In this study we reported the influence of pH environment variations in biofilm formation for strains pertaining to a panel of different GAS FCT-types. The biofilm formation was promoted, excepted in the FCT-1 strains, by a changing in pH from physiological to acidic condition of growth in in vitro biofilm assay. By analyzing the possible association between biofilm formation and pH dependence, we have found that in FCT-2 and FCT-3 strains, the biofilm is promoted by pH reduction leading to an increase of pili expression. These data confirmed a direct link between pH dependent pilus expression and biofilm formation in GAS. As pili are a multi component structure we decided to investigate the functional role of one of its subunits, the AP-1 protein. AP-1 is highly conserved through the different FCT-types and suggests a possible essential role for the pili function. We focused our attention on the AP-1 protein encoded by the FCT-1 strains (M6). In particular this AP-1 protein contains the von Willebrand Factor A (VWFA) domain, which share an homology with the human VWFA domain that has been reported to be involved in adhesion process. We have demonstrated that the AP-1 protein binds to human epithelial cells by its VWFA domain, whereas the biofilm formation is mediated by the N-terminal region of AP-1 protein. Moreover, analyzing the importance of AP-1 in in vivo experiments we found a major capacity of tissue dissemination for the wild-type strain compared to the isogenic AP-1 deletion mutant. Pili have been also reported as potential vaccine candidates against Gram positive bacteria. For these reason we decided to investigate the relationship between cross reaction of sera raised against different GAS and GBS pilin subunits and the presence of a conserved Cna_B domain, in different pilin components. Our idea was to investigate if, using pilus conserved domains, a broad coverage vaccine against streptococcal infection could be possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid organ transplantation (SOT) is considered the treatment of choice for many end-stage organ diseases. Thus far, short term results are excellent, with patient survival rates greater than 90% one year post-surgery, but there are several problems with the long term acceptance and use of immunosuppressive drugs. Hematopoietic Stem Cells Transplantation (HSCT) concerns the infusion of haematopoietic stem cells to re-establish acquired and congenital disorders of the hematopoietic system. The main side effect is the Graft versus Host Disease (GvHD) where donor T cells can cause pathology involving the damage of host tissues. Patients undergoing acute or chronic GvHD receive immunosuppressive regimen that is responsible for several side effects. The use of immunosuppressive drugs in the setting of SOT and GvHD has markedly reduced the incidence of acute rejection and the tissue damage in GvHD however, the numerous adverse side effects observed boost the development of alternative strategies to improve the long-term outcome. To this effect, the use of CD4+CD25+FOXP3+ regulatory T cells (Treg) as a cellular therapy is an attractive approach for autoimmunity disease, GvHD and limiting immune responses to allograft after transplantation. Treg have a pivotal role in maintaining peripheral immunological tolerance, by preventing autoimmunity and chronic inflammation. Results of my thesis provide the characterization and cell processing of Tregs from healthy controls and patients in waiting list for liver transplantation, followed by the development of an efficient expansion-protocol and the investigation of the impact of the main immunosuppressive drugs on viability, proliferative capacity and function of expanded cells after expansion. The conclusion is that ex vivo expansion is necessary to infuse a high Treg dose and although many other factors in vivo can contribute to the success of Treg therapy, the infusion of Tregs during the administration of the highest dose of immunosuppressants should be carefully considered.